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A penalty frame method is proposed for the coupled analysis of finite elements with 

independently modeled substructures. Although previously reported hybrid interface method by 

Aminpour et al (IJNME, Vol 38, 1995) is accurate and reliable, it requires non-conventional  

special solution algorithm such as multifrontal solver. In present study, an alternative method 

has been developed using penalty frame constraints, which results in positive symmetric global 

stiffness matrices. Thus the conventional skyline solver or band solver can be utilized in the 

solution routine, which makes the present method applicable in the environment of  conventional 

finite element commercial software. Numerical examples show applicabil i ty of  the present 

method. 
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1. I n t r o d u c t i o n  

In a detailed structural design stage, reliable 

and efficient stress analysis are required. To 

reduce computational  effort and modeling com- 

plexity, global- local  methods are frequently 

employed in the current structural computa- 

tions. They are mult i -point  constraint method 

(Kris-hnamurthy and Raju, 1992), mesh overlay 

method (Fish, 1992 ; Robbins and Reddy, 1992), 

Lagrange multiplier method (Farhat  and Roux, 

1991), and transition element method (Surana, 

1980). 
Conventional  g lobal - local  analysis is limited 

to the problems with the mesh conformity in the 

interface between global and local zones. How- 
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ever, there are some cases in which coupled 

analyses are required. The assembled structural 

systems requires a coupled analysis in which the 

effect of interactions between substructures should 

be considered. Usually, in the aircraft industry, 

each substructure is analyzed by different groups 

independently. Thus the meshes of each sub- 

structure may not coincide at the interfaces be- 

tween adjacent substructures, 

Recently, a reliable coupled analysis method 

has been proposed to analyze structures with 

independently modeled finite element subdomains 

by Aminpour et al (1995). This method does not 

require one- to-one  nodal correspondence on the 

subdomain boundaries. Thus it provides model- 
ing flexibility and eliminates the need for complex 

mesh transitioning. 
The present study is motivated by this hybrid 

interface technology (Aminpour  et al., 1995; 

Aminpour  et al., 1992; Ransom and McCleary, 

1993 ; Aminpour  and Krishnamurthy, 1997 ; Ran- 
som, 1997; Wang and Ransom, 1997) currently 
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available. The hybrid interface method provides, 

reliable computational tool which already dem- 

onstrated its applicabili ty to the material and 

geometric nonlinear problems in the previously 

reported articles (Aminpour  and Krishnamunhy,  

1997 ; Ransom, 1997 ; Wang and Ransom, 1997) 

in 2-D and 3-D applications. It appears that this 

method can be extended to more complicated pro- 

blems with nonlinearity of materials and defor- 

mations, t{owever, the hybrid interface method 

has its own drawbacks. As the other hybrid finite 

element formulations, the tbrmulation of hybrid 

interface method is quite complicatod. This method 

does not generate banded global stiffness matrices 

and the global stiffness matrices are not positive 

detlnite. Thus for the efficient solution method, 

special algorithms such as multi- frontal solver are 

required because the L D L  z Choleski decom- 

position can.not be applied. 

Thus the objective of  present study is to develop 

interface methodology which can provide efficient 

coupled finite element analyses. We propose a 

"penalty frame method". In the interfaces between 

independently modeled finite element meshes, 

displacement continuity conditions are imposed 

by penalty function constraints. 

Interface frame elements are introduced to 

apply connectivity conditions of displacements of 

one substructure to the other. The present for- 

mulation provides a symmetric banded positive 

definite global stiffness matrices for the global 

coupled system. Thus conventional direct solu- 

tion algorithm known as skyline solver is appli- 

cable for coupled analysis. By applying the 

present method, a great amount of saving of 

computing time and memory- are expected in the 

mesh-coupled large scale problems. 
The drawbacks of the previously developed 

hybrid interface method are now circumvented 

by the present penalty method. The present pen- 

alty frame method can work as an efficient and 

reliable interface matching tool for the coupled 

analysis of independently modeled substructures. 
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Fig, 1 Interface element configuration 

is given in Fig. 1. To satisfy the traction con- 

tinuity conditions at the interface between sub- 

structures, in the weak form, the hybrid interface 

method introduces a Lagrange multiplier ,~. On 

the other hand, present penalty method does not 

require satisfaction of interface traction condi- 

tions. The displacement continuity constraints are 

imposed only through penalty parameters. Thus 

formulation of the present penalty frame method 

is simpler than that of hybrid method because it 

does not employ additional interface unknowns 

,t and it preserves symmetric banded nature of 

global stiffness matrix which cannot be expected 

at the presence of Lagrange multiplier in the 

formulation. 

The variational statement for the present meth- 

od is given in the following form. 

I I = I I , ~ + T I ~ . ,  ~ - ~ , , v - u ) T k ( v - u ) d s  (I)  

The frame displacement v end subdomain dis- 
placement field U can be approximated as 

v = T q s ,  u =Njq, -  (2) 

where T and Nj  are shape functions of  v and u. 

The individual substructure potential energy 

can be expressed as follows. 

] it* 7~ 
2. F o r m u l a t i o n  I-I~: =-2ql lx~q~-q~ i~ 

I~ ~r rK~ K~ ~ ~ :f[1 ,IC~r r ~ or~i 
The interface between lwo mesh configurations --~-Lq~ q?r]LK[~ K~JLqf~-Lql q] JLfoJ 
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] l r =  T~ 

I~ ~r ~r-~ K~ "~" i~ (4) KI !F~, : , - :  or:~t~ i " 
= ~ t ~  q~ "~KO~ K~JLq~J - : ~  ~ - . f~j  

The stationary condition is obtained by taking 

the first variation with respect to the independent 

degrees of freedom (tl~', qJ and q~). 

~I'I I, ,~:,~, '= dlqa + ~II~ + kfs(oNr-Ou r) (v-if, ds 

-Ldq~ 0q~ ,1LEo, uool,.oi-lt~1 f 
n q  J ~ q l  - ' 41  - ~ -  

(5) 
+[adoq~'~ - -~~ 

+[3qr ,r ' :  ' , . q , I  ^ 
~ 'LGj '  , . , , / i  , l  : o  

where 

(6) 
G':'=k, fsNfNids and G~":k, fsTfT,ds 
tL~ and qJ are the generalized displacement in 

subdomain Q j. Superscript o indicates the sub- 

domain quantities which are not on the interfaces 

and superscript i denotes the subdomain degrees 

of freedom which is on the interfaces, qs is the 

generalized displacement along the penalty frame 

and K~ and If~ are stiffness matrices of each sub- 

domain. Global  stiffness equation can be rearran- 

ged and be expressed as, 

~ 0" -Gf' G~'t-Cd' - ~ '  ~ )q, : 0 (7) 
[ 0  0 _ ~ ,  ,. ,~_,..  oj, �9 

0 0 o ~ '  K~ o !o3 ff 

The displacement field v on the frame interface 

~s interpolated using new shape function T and 

nodal displacement q~. Piocewise linear functions 

and cubic spline functions are employed as inter- 

polation functions o fT .  In the case of  using cubic 

spline function, it is necessary to compute the 

values of the first and second derivatives of the 

interface displacement v at the ends of the inter- 
face. In the present study these derivatives are 

computed by applying finite difference of the 

interface nodal values at the end. 

v=/(s; :~ c,B,,:s)= ~ , ,  7 �9 = B , , s : E A : . f ,  (8) 
i = - I  / ~ - - I  

In the above Eq. ~8), n + 2  spline function Be 

and coefficient of spline function c~ are required 

in the condition of the given r~ data set. To 

determine the n + 2  coefficients ci, the ~,z+2 equa- 

tions are required. But we have only n data set. 

Thus to get additional two more conditions it is 

required to extract the values of first or second 

derivatives at both ends of interface. The n + 2  

conditions are expres~d as [A]f~ in Eq. (8), 

in which the dimension of the matrix [A~ is 

(n-k2) "<n. The coefficient f i  is the interface 

nodal displacement value which is the component 

of q, .  

The cubic spline function B~ is defined as 

follows. 

i! t<,,.,, t~,], 

B~(t = ~ "~, t - t~-~, ) 

i f  t.~[t,_,, t,.]. 

- /~+3M t- t i - :  +3h,t-t_, "-3(t-t,.-, } B~(t'..--~ 

i! t~[t,, t~,,], 

Biil~=]-I ~' v ~ , ~3 ~1 h~ ~ h • 3h (.Li-t,'r, 3h.la:-., -3(l , :- t .  , 

i /  t~[r t,,~. 
B,,L :~ i  {(t,+,-t!"} 

otherwise, B i=O (9, 

where h denotes the length of the interval between 

the nodes on the frame interface. 

On the other hand, the variational statement for 

the hybrid interface method is given in the fol- 

lowing form. The detailed derivations can be 

found in the reference (Aminpour  et al., 1995). 

]'I = No, § + ~Ar ( v -  u) ds  (10) 

k = R a  ~ 11 ) 

where R is the base function of ,~ and a is the 

parameter vector to be determined. The stationary 

condition is obtained for the independent degrees 
of  freedom (qff, o~, q~, and r 

~I-[ I,~.q'..qt,a~..,..~=O "12) 
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K{ ~ K1 ~ 
K~' Kf ~ 
0 0 
0 0 
0 0 

M1 ~ 0 
0 0 

where 

0 0 0 M l 0  
0 0 0 0 0 

K~' K~ ~ 0 0 
K~ ~ K ~ ~  0 0 

0 0 0 GiC~ 
0 0 Gl~0 0 

. ~  o C~ o o 

'qt~ 

a31= 
q s l  

"zl I 

M:=-fsN/R,ds and G,=-fsTfR~ds ; 

ff 
ff 
f~ 
ff (13) 
0 
0 
0 

j= l ,  2 (14) 

Some of the diagonal component of the global 

stiffness matrix is zero in the hybrid interface 

method as given in Eq. (13). 

However, no zero diagonal component can be 

found in the present formulation which is given 

in Eq. (7). While the hybrid interface method 

produces non-banded and positive indefinite glo- 

bal stiffness matrices as shown in Eq. (13), the 

present penalty frame method produces symme- 

tric banded positive definite stiffness matrices as 

shown in Eq, (7). Thus this method does not 

require complicated special solver such as multi-  

frontal solver. The present penalty method facili- 

tates direct solver such as Gauss-elimination after 

LDL r decomposition of the global stiffness 

matrices. 

3. N u m e r i c a l  E x a m p l e s  

Various numerical examples are tested to assess 

the efficiency and accuracy of the present method. 

Linear piecewise polynomials and cubic splines 

are used as the interpolation functions in the 

interface frame elements for the numerical com- 

putations for the newly proposed method. How- 

ever, various types of interpolation functions can 

also be easily applied for the base functions of the 

interface displacement field v. 

3.1 C a n t i l e v e r  beam wi th  a v e r t i c a l  i n t e r f a c e  

This numerical example is the one of simplest 

problem to check validity of the proposed method. 

The configuration of geometry and mesh is 

depicted in the Fig. 2. Four-node isoparametric 

elements are used. Only end stretching and shear 

loads are considered. 

Table 1 Numerical result for beam extension 

Mesh a ! Mesh b disp.(ut~) Penalty Frame 
- -  i 

10• 10X3 6.00 pass the patch test 

10x8 10x4 6.00 pass the patch test 

10• 10X5 6.00 pass the patch test 

Exact 6.00 

Table 2 Numerical result for beam flexure 
T 
' Mesh a Mesh b disp.(vnD) 

Conventional I 10• 10x2 98.46 
Finite i 10X4 10X4 99.9t 

i 

i 

Element ! lOX8 10><,8 100.32 

Penalty 10X4 10• 99.42 
Frame 10• 10x2 99.89 

I 

Method I 10X8 10• 100.22 
r 

Exact 102.60 

i --lZ Tv 
i l t ] S " ~ - - '  

I 1 : J ~ 1 [ y II I / I I 
t. ~ :  I - r I ; II ~ 1 '  ' 1  I ~ i  

a b 
Fig. 2 Cantilever beam with a vertical interface un- 

der extension or shear load 

In the interface frame, three nodes are placed 

with the equal spaces. Since the number of frame 

nodes has no importance in this case, all the 

simulation results with the number of interface 

nodes greater than three are the same as the exact 

patch solutions. As shown in Table I, present 

analysis with node mismatching at the interface 

of subdomains pass the patch test for uniform 

extension case. Thus the present method share the 

patch-passing capability with the hybrid inter- 

face method. 

The flexure test also shows the validity of the 

present penalty approach. Table 2 describes mesh 

configuration fbr the coupled analysis. For the 

various mesh configurations, it is observed that 

the end deflections were obtained accurately. The 
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Fig. 3 

I og to ( k /E  ) 

Sensitivity of penalty parameter for beam 
bending problem with tip load 

displacement results of the coupled analysis are 

almost equivalent to those of the uniform mesh 

configuration. The displacement results of the 

present approach show close agreement with 

those of the exact elasticity solution. 

The stable range of penalty parameter k is 

examined in Fig. 3. As shown in Fig. 3, stable 

end deflection u is provided in the wide range of 

penalty parameter, 1 0 2 < k / E <  I0 t~ This implies 

the newly developed method works insensitively 

for the wide range of the values of the penalty 

parameter. 

3.2 P l a t e  w i th  a center  hole 

Plate with a central circular hole under uniform 

tension load is considered It is a well-established 

stress concentration problem to investigate the 

performance of coupled analysis. The configura- 

tion of the whole geometry and local zone is 

shown in the Fig. 4. The coupled global-local 

analysis demonstrates the accuracy and reliability 

of the proposed method. 

It provides accurate prediction for stress con- 

centration factors as shown in Fig. 5. In Fig. 5, 

(Nx) o denotes uniform far-field longitudinal stress 

resultant. ,N'0 is the distributions of the hoop stress 

resultant along the 0 = 0  line (along the x axis). 

, I - - . - -  . . . . . . . . . . . . . . . . . . . . . . . .  

-i 
[ ." , , . ~  

/ I 

i 

~T TT~ J'-"T-I T'7_ ; ' T ' ~  
l i l  [ ~ ~ f i I I 1 J : I I ! 

" ' : "  l l i l l ] l  ~ q - f  . . . . . . .  
~- -~  ..~, H+~-t~+~ 
~"-~ [ z ~ l l  I l l  ] I !  I 1 

",_ I i J i i l l ; l : l r ]  

J GloOal ReN 

Local Region 

Fig, 4 Plate with a center hole 

2.~t 

2 Interface :. o = 
Exact 

-0.5 

0 2 4. 6 8 10 t2 14 16 18 

r 
(normalized positio~ in the radial direction) 

Fig. 5 Stress concentration factor along radius 

20 

The coordinate r represents the normalized posi- 

tion in the radial direction with respect to the 

hole radius Ro. Hoop stress distribution of the 

plate with circular hole (H/Ro=4.0) is given in 

the plotting. In the local zone, the number of 

nodes in the radial direction is 21 and the number 

of nodes in the circumferential direction is 21. 

In the interface frame betv,-een global and local 

zone, 13 nodes are placed in equal spaces. The 

stress concentration factor Ky(=No/ (gx )  o) of 

the present method shows good correlation with 

that of the elasticity solution. 

As shown in Fig, 6, the range of validity of 

penalty parameter has been investigated. Stable 

solutions were obtained for dimensionless para- 

meter 102<k/E< 101~ Once more, the variation 
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Sensitivity of dimensionless penalty parame- 
ters for plate problem with a hole 
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Fig. 8 Horizontal displacement tr along the interface 

tik/E- ]011~ 

a b 
Fig. 7 Clampext-clamped unsymmetric beam 

of the penalty parameter does not make sensitive 

influence on the accuracy of the solutions. 

3.3 Clamped-clamped unsymmetr ie  beam 

Here, we consider clamped-clamped unsymme- 

tric beam problem as shown in Fig. 7. This pro- 

blem was tested using Hybrid variational method 

for parallel computing in reference (Farhat and 

Geradin, 1992',. It has two substructures, which 

have different material constants and mesh con- 

figurations, and two ends are clamped. 

Substructure a has 16 by 16 mesh, and the mesh 

of substructure b is 12 by 16. For the case of the 

ratio of Young's modulus in substructure a and 

b is 0.2 ( E , , / E b = 0 . 2 ) .  the displacement results 

are shown in the Fig. 8 to the Fig. 15. Sub- 

structure a has 17 interface nodes, substructure b 

has 13, and the number of interface frame nodes 

are 17. 

�9 1~ ~ 
"[ 

14"- 
I 
I 

I 
U a,L 

I 

i 
41. 

l 

Fig. 9 

I 
! 

�9 "'J" ] 
, < j . . . , r  

,,V" 
r 

/ l "  , o c o n v l ~ n m l  i 

n i x i e  n u m b e r  a l o n g  t r l e  i n t e r f a c e  

Horizontal displacement u along t h e  interface 

(k/ E= ~o ~7 

For the four different values of penalty parame- 

ters, the numerical computations were carried 

out. Figures 9 and 13 show the optimal perform- 

ance for the interface displacement solutions 

with the penalty parameter k/E=:-lO 2, For the 

smaller penalty parameter ( k / E = l O J ) ,  penahy 

constraints are not strong enough to provide reli- 

able solutions as shown in Figs. 8 and 12. 

Special attention needs to be paid on the cases 

of larger penalty parameter ( k / E  = 10 ~) than the 

optimal value (k/E-"= lOZ). In those cases ( k / E ' )  

104), although the horizontal displacement of 

coupled substructure analysis agree reasonably 

well with those of compatible finite element 
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I f ,. 
F . l a s t i c  energy-2-kJs(v-u,~ds caused by 

penalty constraints 

analysis, penalty constraints are imposed too 

strongly to provide accurate vertical displace- 

ments along the interface�9 They are shown in the 

Figs. 11 and 15. 

The considerable amounts of deviations of dis- 

placement fields from the solutions of conven- 

tional finite elements are observed. The optimal 

solution characteristics are investigated by evalua- 

ting internal energy of the subdomains for various 

values of penalty parameter�9 As shown in the 

Fig. 16, the optimal solutions of this problem can 

be obtained at the local minimum of augmented 

or el,.stic er, e,'gy ~-S,/o<',,,"-u') ( , , -u)  a~ p a r t s  

caused by penlilty constraint�9 However, Further 

study needs to be followed on how to select 

proper penalty parameters. 

3 A  P l a t e  b e n d i n g  p r o b l e m s  

The configuration of the plate under edge ben- 

ding moments are given in Fig. 17. The nine-node 

isoparametric Mindlin plate elements are used 

in the whole domain. The mid-plane is divided 

into two subdomains. In the subdomain a, nine 

nodes are placed at the interface and in the sub- 

domain b, seven nodes are placed at the interface. 

On the frame interface, 15 nodes are used. Uni- 

form bending moments are applied at the sides of 

the plate. To eliminate the rigid body modes, 

transverse deflections w at three corners are set 

to zero. In Fig. 18, the deformed shape of plate 

under pure bending is shown. 

In the plate bending problem, penalty parame- 

Table 3 R~ults for pure bending patch test 

Penalty 
Frame 1.04M)l 

Method 

Exact 
Patch 1.0000 

Solution 

I 
! 0 . 7001  [ 1 ,0001 

I 
i 1 

i I 
0.7000 I 1.0000 

Interface frame 
/ 

..... ~.-. .... -~ . . . . .  ~,.~ . . . . .  + . . . . .  -I~;. 
., . '  .." �9 / j  f .-" "" " ~ " ~  " " / - - Z -  .." .l,."/'....-' 

..-_" ',.. " .,<',; , , '"  ,, ' .  ....... . . . .  ; . . . .  ~-.",7--,, 
,' ~t ..... ,,," ,,, , ,  . / "  .< , l ' - . . . ,  . .  /Vl_, 

_?: .'.::: j - : : :  ", =, .,,' 
a 1 b 

Fig. 17 Plate under pure bending 

\ 

Fig. 18 Deformed shape of plate under pure bending 
patch test 

ters should be carefully chosen because trans- 

verse deflection w and rotational angles 0= and 0y 

have different dimensions. For the given problem, 

the penalty parameter of vertical displacement is 

chosen -s relatively small (about I0 ~ and those 

of rotational angles are 106 times of reference 

bending rigidity. The number of the nodes on the 

frame interface is taken as twice as those of 

boundary nodes of subdomains. 

Table 3 shows the comparison between analy- 

tical bending patch solutions and the present 

results. Although the bending patch test cannot 

be passed rigorously in the present analysis, the 

C o p y r i g h t  ( C )  2 0 0 3  N u r i M e d i a  C o . ,  Ltd.  
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T a b l e  4 Numerical results for plate flexure 

Conventional 0 ~ 
0 o 

I Wr~ 
l "25.323 

j 25.310 

20* 25.299 

30* 25.276 

Penalty 10* 25.308 
Frame 

Method 

L i!--;v 
. . . . . . . . . . . . . . . . . . . . . . . .  __.__.~/ 

I' 1-, _.~,q ........... i ~  ; ......... h,i , 

�9 , ~ . 

 ii _.i 
L ',\ . 

Fig. 19 Clamped plate with a vertical interface un- 
der shear force 

present penalty frame method works effectively in 

the coupled analysis. 

In the next case, flexure problem is considered. 

The one end is clamped and the other end is 

under shear load. To investigate the mesh dis- 

tonion effect, interface is inclined with angle 0 as 

shown in Fig. 19. 

In Table 4, distortion angle 0 is varied from 

0 to 30 degree by 10 degree increment. The tip 

deflections are calculated by using nine-node 

isoparametric elements. As ~iven in Table 4, the 

present method provides quite accurate end 

deflections which compares well to the conven- 
tional finite element results even in the consi- 

derably distorted mesh configurations. 

4. Conclusions 

The penalty frame method is proposed for the 
efficient analysis of assembled global structural 

system, which consists of individual substruc- 

tures with no mesh compatibilities along the 

interface. Numerical examples demonstrate the 

efficiency and accuracy of the proposed method. 

The present method is simpler in the tbrmulation 

than the hybrid interface method. Skyline solu- 

tion algorithm is applicable for the present meth- 

od since this method provides positive definite 

banded global symmetric stiffness matrices. The 

reliable analysis by the present method ,~trongly 

depends upon the proper selection of penalty 

parameters. More works need to be followed on 

how to select proper penalty parameters. 
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